
UNIT - III: EMAIL PRIVACY: Email privacy, Pretty Good Privacy (PGP), PGP
and S/MIME, IP Security Overview, IP Security Architecture, Authentication

Header, Encapsulating Security Payload, Combining Security Associations,

Internet Key Exchange, cryptographic Suites.

TEXTBOOK William Stallings, Network Security Essentials (Applications and

Standards), Pearson Education.

PRETTY GOOD PRIVACY

PGP is a remarkable phenomenon. Largely the effort of a single person, Phil Zimmermann, PGP provides a

confidentiality and authentication service that can be used for electronic mail and file storage applications. In

essence, Zimmermann has done the following:

1. Selected the best available cryptographic algorithms as building blocks.

2. Integrated these algorithms into a general-purpose application that is independent of operating system and

processor and that is based on a small set of easy-to-use commands.

3. Made the package and its documentation, including the source code, freely available via the Internet, bulletin

boards, and commercial networks such as AOL (America On Line).
4. Entered into an agreement with a company (Viacrypt, now Network Associates) to provide a fully

compatible, low-cost commercial version of PGP.

PGP has grown explosively and is now widely used. A number of reasons can be cited for this growth.

1. It is available free worldwide in versions that run on a variety of platforms, including Windows, UNIX,

Macintosh, and many more. In addition, the commercial version satisfies users who want a product that comes

with vendor support.

2. It is based on algorithms that have survived extensive public review and are considered extremely secure.

Specifically, the package includes RSA, DSS, and Diffie-Hellman for public-key encryption;CAST-128, IDEA,

and 3DES for symmetric encryption; and SHA-1 for hash coding.

3. It has a wide range of applicability, from corporations that wish to select and enforce a standardized scheme
for encrypting files and messages to individuals who wish to communicate securely with others worldwide over

the Internet and other networks.

4. It was not developed by, nor is it controlled by, any governmental or standards organization. For those with

an instinctive distrust of “the establishment,” this makes PGP attractive.

5. PGP is now on an Internet standards track (RFC 3156; MIME Security with OpenPGP). Nevertheless, PGP

still has an aura of an anti-establishment endeavor.

Notation
Most of the notation used in this chapter has been used before, but a few terms are new.

It is perhaps best to summarize those at the beginning.The following symbols are used.

Operational Description
The actual operation of PGP, as opposed to the management of keys, consists of four services: authentication,

confidentiality, compression, and e-mail compatibility

AUTHENTICATION

PGP is the digital signature scheme.The sequence is as follows.

1. The sender creates a message.

2. SHA-1 is used to generate a 160-bit hash code of the message.

3. The hash code is encrypted with RSA using the sender’s private key, and the

result is prepended to the message.

4. The receiver uses RSA with the sender’s public key to decrypt and recover the

hash code.

5. The receiver generates a new hash code for the message and compares it with

the decrypted hash code. If the two match, the message is accepted as authentic.

The combination of SHA-1 and RSA provides an effective digital signature scheme. Because of the strength of

RSA, the recipient is assured that only the possessor of the matching private key can generate the signature.

Because of the strength of SHA-1, the recipient is assured that no one else could generate a new

message that matches the hash code and, hence, the signature of the original message. As an alternative,

signatures can be generated using DSS/SHA-1.

CONFIDENTIALITY Another basic service provided by PGP is confidentiality, which is provided by encrypting

messages to be transmitted or to be stored locally as files. In both cases, the symmetric encryption algorithm

CAST-128 may be used. Alternatively, IDEA or 3DES may be used.

The sequence, which can be described as follows.

1. The sender generates a message and a random 128-bit number to be used as

a session key for this message only.
2. The message is encrypted using CAST-128 (or IDEA or 3DES) with the session

key.

3. The session key is encrypted with RSA using the recipient’s public key and is

prepended to the message.

4. The receiver uses RSA with its private key to decrypt and recover the session

key.

5. The session key is used to decrypt the message.

As an alternative to the use of RSA for key encryption, PGP provides an option referred to as Diffie-Hellman.
Diffie- Hellman is a key exchange algorithm. In fact, PGP uses a variant of Diffie-Hellman that does provide

encryption/decryption, known as ElGamal.

CONFIDENTIALITY AND AUTHENTICATION As, both services may be used for the same message. First, a signature is

generated for the plaintext message and prepended to the message. Then the plaintext message plus signature is

encrypted using CAST-128 (or IDEA or 3DES), and the session key is encrypted using RSA (or ElGamal). This

sequence is preferable to the opposite: encrypting the message and then generating a signature for the encrypted

message. It is generally more convenient to store a signature with a plaintext version of a message. Furthermore,

for purposes of third-party verification, if the signature is performed first, a third party need not be concerned

with the symmetric key when verifying the signature.

COMPRESSION As a default, PGP compresses the message after applying the signature but before encryption.

This has the benefit of saving space both for e-mail transmission and for file storage.

The placement of the compression algorithm, indicated by Z for compression and Z–1 for decompression.

1. The signature is generated before compression for two reasons:
a. It is preferable to sign an uncompressed message so that one can store only the uncompressed message

together with the signature for future verification. If one signed a compressed document, then it would be

necessary either to store a compressed version of the message for later verification or to

recompress the message when verification is required.

b. Even if one were willing to generate dynamically a recompressed message for verification, PGP’s

compression algorithm presents a difficulty. Applying the hash function and signature after compression would

constrain all PGP implementations to the same version of the compression algorithm.

2. Message encryption is applied after compression to strengthen cryptographic security. Because the

compressed message has less redundancy than the original plaintext, cryptanalysis is more difficult.

E-MAIL COMPATIBILITY When PGP is used, at least part of the block to be transmitted is encrypted. If only the

signature service is used, then the message digest is encrypted (with the sender’s private key). If the

confidentiality service is used, the message plus signature (if present) are encrypted (with a one-time symmetric

key). Thus, part or all of the resulting block consists of a stream of arbitrary 8-bit octets. However, many
electronic mail systems only permit the use of blocks consisting of ASCII text. To accommodate this restriction,

PGP provides the service of converting the raw 8-bit binary stream to a stream of printable ASCII characters.

Flow of PGP is as follows

On transmission (if it is required), a signature is generated using a hash code of the uncompressed plaintext.

Then the plaintext (plus signature if present) is compressed. Next, if confidentiality is required, the block

(compressed plaintext or compressed signature plus plaintext) is encrypted and prepended with the public-key

encrypted symmetric encryption key. Finally, the entire block is converted to radix-64 format.

On reception, the incoming block is first converted back from radix-64 format to binary. Then, if the message is

encrypted, the recipient recovers the session key and decrypts the message. The resulting block is then
decompressed. If the message is signed, the recipient recovers the transmitted hash code and compares it to its

own calculation of the hash code.

Cryptographic Keys and Key Rings

PGP makes use of four types of keys: one-time session symmetric keys, public keys, private keys, and

passphrase-based symmetric keys.

1. A means of generating unpredictable session keys is needed.

2. We would like to allow a user to have multiple public-key/private-key pairs. One reason is that the user

may wish to change his or her key pair from time to time. In addition to the need to change keys over

time, a user may wish to have multiple key pairs at a given time to interact with different groups of

correspondents or simply to enhance security by limiting the amount of material encrypted with any

one key.

3. Each PGP entity must maintain a file of its own public/private key pairs as well as a file of public keys

of correspondents.

SESSION KEY GENERATION

• Each session key is associated with a single message and is used only for the purpose of encrypting and

decrypting that message.

• Recall that message encryption/decryption is done with a symmetric encryption algorithm.

• CAST-128 and IDEA use 128-bit keys; 3DES uses a 168-bit key.

• For the following discussion, we assume CAST-128.

• Random 128-bit numbers are generated using CAST-128 itself.

• The input to the random number generator consists of a 128-bit key and two 64-bit blocks that are

treated as plaintext to be encrypted. Using cipher feedback mode, the CAST-128 encrypter produces

two 64-bit cipher text blocks, which are concatenated to form the 128-bit session key.

KEY IDENTIFIERS

• As we have discussed, an encrypted message is accompanied by an encrypted form of the session key

that was used for message encryption.

• The session key itself is encrypted with the recipient’s public key.

• Hence, only the recipient will be able to recover the session key and therefore recover the message.

• If each user employed a single public/private key pair, then the recipient would automatically know

which key to use to decrypt the session key: the recipient’s unique private key.

• We have stated a requirement that any given user may have multiple public/private key pairs.

How, then, does the recipient know which of its public keys was used to encrypt the session key?
 One simple solution would be to transmit the public key with the message.

• The recipient could then verify that this is indeed one of its public keys, and proceed.

• This scheme would work, but it is unnecessarily wasteful of space.

• An RSA public key may be hundreds of decimal digits in length.

 Another solution would be to associate an identifier with each public key that is unique at least within

one user.

• That is, the combination of user ID and key ID would be sufficient to identify a key uniquely.

• Then only the much shorter key ID would need to be transmitted.

• This solution, however, raises a management and overhead problem: Key IDs must be assigned and

stored so that both sender and recipient could map from key ID to public key.

• This seems unnecessarily burdensome.

• The solution adopted by PGP is to assign a key ID to each public key that is, with very high

probability, unique within a user ID.

• The key ID associated with each public key consists of its least significant 64 bits

• This is a sufficient length that the probability of duplicate key IDs is very small.

• A key ID is also required for the PGP digital signature. Because a sender may use one of a number of

private keys to encrypt the message digest, the recipient must know which public key is intended for

use.

• Accordingly, the digital signature component of a message includes the 64-bit key ID of the required

public key.

• When the message is received, the recipient verifies that the key ID is for a public key that it knows for

that sender and then proceeds to verify the signature.

Format of a transmitted message

A message consists of three components: the message component, a signature (optional), and a session key

component (optional).

The message component includes the actual data to be stored or transmitted, as well as a filename and a

timestamp that specifies the time of creation.

The signature component includes the following.

 Timestamp: The time at which the signature was made.

 Message digest: The 160-bit SHA-1 digest encrypted with the sender’s private signature key. The

digest is calculated over the signature timestamp concatenated with the data portion of the message
component. The inclusion of the signature timestamp in the digest insures against replay types of

attacks.

 Leading two octets of message digest: Enables the recipient to determine if the correct public key was

used to decrypt the message digest for authentication by comparing this plaintext copy of the first two

octets with the first two octets of the decrypted digest. These octets also serve as a 16-bit frame check

sequence for the message.

 Key ID of sender’s public key: Identifies the public key that should be used to decrypt the message

digest and, hence, identifies the private key that was used to encrypt the message digest.

The message component and optional signature component may be compressed using ZIP and may be encrypted

using a session key.

 The session key component includes the session key and the identifier of the recipient’s public key

that was used by the sender to encrypt the session key. The entire block is usually encoded with radix-

64 encoding.

PGP KEY RINGS

Each PGP user has a pair of keyrings to store public and private keys

– public-key ring contains all the public-keys of other PGP users known to this user

Private-key ring contains the public/private key pair(s) for this user,

Private keys are encrypted using a key derived from a hashed passphrase.

• Timestamp: The date/time when this entry was generated.

• Key ID: The least significant 64 bits of the public key for this entry.

• Public Key: The public key for this entry.

• User ID: Identifies the owner of this key. Multiple user IDs may be associated with a single public

key.

Private-key ring

• Timestamp: The date/time when this key pair was generated.

• Key ID: The least significant 64 bits of the public key for this entry.

• Public key: The public-key portion of the pair.

• Private key: The private-key portion of the pair; this field is encrypted.

• User ID: Typically, this will be the user’s e-mail address (e.g.,stallings@acm.org). However, the user

may choose to associate a different name with each pair (e.g., Stallings, WStallings, WilliamStallings,

etc.) or to reuse the same User ID more than once.

• The private-key ring can be indexed by either User ID or Key ID

• Although it is intended that the private-key ring be stored only on the machine of the user that created

and owns the key pairs and that it be accessible only to that user, it makes sense to make the value of

the private key as secure as possible.

• Accordingly the private key itself is not stored in the key ring.

• Rather this key is encrypted using CAST-128 (or IDEA or 3DES).

The procedure is as follows (for encrypting the private keys and storing the private key ring)

1. The user selects a passphrase to be used for encrypting private keys.

2. When the system generates a new public/private key pair using RSA it asks the user for the passphrase.

Using SHA-1, a 160-bit hash code is generated from the passphrase and the passphrase is discarded.

3. The system encrypts the private key using CAST-128 with the 128 bits of the hash code as the key. The

hash code is then discarded, and the encrypted private key is stored in the private-key ring.

• Subsequently, when a user accesses the private-key ring to retrieve a private key, he or she must supply

the passphrase. PGP will retrieve the encrypted private key, generate the hash code of the passphrase,
and decrypt the encrypted private key using CAST-128 with the hash code.

PGP Message Generation (from User A to User B: no compression or radix-64 conversion)

1. Signing the message:

a. PGP retrieves the sender’s private key from the private-key ring using your_userid as an index. If

your_userid was not provided in the command, the first private key on the ring is retrieved.

b. PGP prompts the user for the passphrase to recover the unencrypted private

key.

c. The signature component of the message is constructed.

2. Encrypting the message:

a. PGP generates a session key and encrypts the message.

b. PGP retrieves the recipient’s public key from the public-key ring using her_userid as an index.

c. The session key component of the message is constructed. The receiving PGP entity performs the following

steps.

1. Decrypting the message:
a. PGP retrieves the receiver’s private key from the private-key ring using the

Key ID field in the session key component of the message as an index.

b. PGP prompts the user for the passphrase to recover the unencrypted

private key.

c. PGP then recovers the session key and decrypts the message.

2. Authenticating the message:

a. PGP retrieves the sender’s public key from the public-key ring using the Key

ID field in the signature key component of the message as an index.

b. PGP recovers the transmitted message digest.

c. PGP computes the message digest for the received message and compares it

to the transmitted message digest to authenticate.

Public-Key Management
This whole business of protecting public keys from tampering is the single most difficult problem in practical

public key applications. It is the “Achilles heel” of public key cryptography, and a lot of software complexity is

tied up in solving this one problem.

PGP provides a structure for solving this problem with several suggested options that may be used. Because

PGP is intended for use in a variety of formal and informal environments, no rigid public-key management

scheme is set up.

APPROACHES TO PUBLIC-KEY MANAGEMENT The essence of the problem is this: User A must build up a public-

key ring containing the public keys of other users to interoperate with them using PGP. Suppose that A’s key

ring contains a public key attributed to B, but in fact the key is owned by C. This could happen, for example, if

A got the key from a bulletin board system (BBS) that was used by B to post the public key but that has been

compromised by C. The result is that two threats now exist. First, C can send messages to A and forge B’s

signature so that A will accept the message as coming from B. Second, any encrypted message from A to B can

be read by C.

A number of approaches are possible for minimizing the risk that a user’s public-key ring contains false

public keys

1. Physically get the key from B. B could store her public key (PUb)on a floppy disk and hand it to A.

A could then load the key into his system from the floppy disk. This is a very secure method but has

obvious practical limitations.

2. Verify a key by telephone. If A can recognize B on the phone, A could call B and ask her to dictate

the key, in radix-64 format, over the phone. As a more practical alternative, B could transmit her key

in an e-mail message to A.

3. Obtain B’s public key from a mutual trusted individual D. For this purpose, the introducer, D,

creates a signed certificate. The certificate includes B’s public key, the time of creation of the key,

and a validity period for the key.

4. Obtain B’s public key from a trusted certifying authority. Again, a public-key certificate is created

and signed by the authority. A could then access the authority, providing a user name and receiving a
signed certificate.

THE USE OFTRUST

 The basic structure is as follows. Each entry in the public-key ring is a public key certificate

 Associated with each such entry is a key legitimacy field that indicates the extent to which PGP will

trust that this is a valid public key for this user

 In turn, each signature has associated with it a signature trust field that indicates the degree to which

this PGP user trusts the signer to certify public keys

 Each entry defines a public key associated with a particular owner, and an owner trust field is

included that indicates the degree to which this owner is trusted to sign other public-key certificates.

Assigning of trust values by PGP Entity

 When A inserts a new public key on the public-key ring, If the owner is A, and therefore this public

key also appears in the private-key ring, then a value of ultimate trust is automatically assigned to the

trust field.

Otherwise, PGP asks A for his assessment of the trust to be assigned to the owner of this key, and A

must enter the desired level. The user can specify that this owner is unknown, untrusted, marginally trusted,

or completely trusted.

 When the new public key is entered, one or more signatures may be attached to it. When a signature is

inserted into the entry, PGP searches the public-key ring to see if the author of this signature is among

the known public-key owners.

 The value of the key legitimacy field is calculated on the basis of the signature trust fields present in

this entry. If at least one signature has a signature trust value of ultimate, then the key legitimacy value

is set to complete. Otherwise, PGP computes a weighted sum of the trust values

 Note that all keys whose owners are fully or partially trusted by this user have been signed by this user,

with the exception of node L. Such a user signature is not always necessary, as the presence of node L

indicates, but in practice, most users are likely to sign the keys for most owners that they trust. So, for

example, even though E’s key is already signed by trusted introducer F, the user chose to sign E’s key

directly.

 We assume that two partially trusted signatures are sufficient to certify a key. Hence, the key for user H

is deemed legitimate by PGP because it is signed by A and B, both of whom are partially trusted.

 A key may be determined to be legitimate because it is signed by one fully trusted or two partially

trusted signatories, but its user may not be trusted to sign other keys. For example, N’s key is legitimate

because it is signed by E, whom this user trusts, but N is not trusted to sign other keys because this user

has not assigned N that trust value. Therefore, although R’s key is signed by N, PGP does not consider

R’s key legitimate. This situation makes perfect sense. If you wish to send a private message to some

individual, it is not necessary that you trust that individual in any respect. It is only necessary that you

are sure that you have the correct public key for that individual.

REVOKING PUBLIC KEYS

 A user may wish to revoke his or her current public key either because compromise is suspected or

simply to avoid the use of the same key for an extended period

 The convention for revoking a public key is for the owner to issue a key revocation certificate, signed

by the owner. This certificate has the same form as a normal signature certificate but includes an

indicator that the purpose of this certificate is to revoke the use of this public key. Note that the

corresponding private key must be used to sign a certificate that revokes a public key

S/MIME

Secure/Multipurpose Internet Mail Extension (S/MIME) is a security enhancement to the MIME Internet e-mail

format standard based on technology from RSA Data Security. Although both PGP and S/MIME are on an IETF

standards track, it appears likely that S/MIME will emerge as the industry standard for commercial and

organizational use, while PGP will remain the choice for personal e-mail security for many users. S/MIME is

defined in a number of documents—most importantly RFC 3370, 3850, 3851, and 3852.

RFC 5322
RFC 5322 defines a format for text messages that are sent using electronic mail. It has been the standard for

Internet-based text mail messages and remains in common use. In the RFC 5322 context, messages are viewed

as having an envelope and contents. The envelope contains whatever information is needed to accomplish

transmission and delivery. The contents compose the object to be delivered to the recipient.

The overall structure of a message that conforms to RFC 5322 is very simple. A message consists of some

number of header lines (the header) followed by unrestricted text (the body). The header is separated from the

body by a blank line.

A header line usually consists of a keyword, followed by a colon, followed by the keyword’s arguments; the
format allows a long line to be broken up into several lines. The most frequently used keywords are From, To,

Subject, and Date. Here is an example message:

Limitations of the SMTP/5322 scheme
• SMTP cannot transmit executable files or other binary objects

• SMTP cannot transmit text data that includes national language characters

• SMTP servers may reject mail message over a certain size.

• SMTP gateways that translate between ASCII and the character code EBCDIC do not use a consistent

set of mappings, resulting in translation problems.

• SMTP gateways to X.400 electronic mail networks cannot handle non textual data included in X.400

messages.

• Some SMTP implementations do not adhere completely to the SMTP standards defined in RFC 821.

Common problems include:

Deletion, addition, or reordering of carriage return and linefeed

Truncating or wrapping lines longer than 76 characters

Removal of trailing white space (tab and space characters)
Padding of lines in a message to the same length

Conversion of tab characters into multiple space characters

MIME is intended to resolve these problems in a manner

Multipurpose Internet Mail Extensions
Multipurpose Internet Mail Extension (MIME) is an extension to the RFC 5322. The MIME specification

includes the following elements.

1. Five new message header fields are defined, which may be included in an RFC 5322 header. These

fields provide information about the body of the message.

2. A number of content formats are defined, thus standardizing representations that support multimedia

electronic mail.

3. Transfer encodings are defined that enable the conversion of any content format into a form that is
protected from alteration by the mail system.

The five header fields defined in MIME are

MIME-Version: Must have the parameter value 1.0. This field indicates that the message conforms to RFCs

2045 and 2046.

• Content-Type: Describes the data contained in the body with sufficient detail that the receiving user agent can

pick an appropriate agent or mechanism to represent the data to the user or otherwise deal with the data in an

appropriate manner.

• Content-Transfer-Encoding: Indicates the type of transformation that has been used to represent the body of

the message in a way that is acceptable for mail transport.

• Content-ID: Used to identify MIME entities uniquely in multiple contexts.

• Content-Description: A text description of the object with the body; this is useful when the object is not
readable (e.g., audio data).

MIME CONTENT TYPES

There are four subtypes of the multipart type, all of which have the same overall syntax.

• The Multipart/Mixed subtype is used when there are multiple independent body parts that need to be

bundled in a particular order.

• For the multipart/parallel subtype, the order of the parts is not significant. If the recipient’s system is

appropriate, the multiple parts can be presented in parallel.

– For example, a picture or text part could be accompanied by a voice commentary that is

played

– while the picture or text is displayed.

• For the multipart/alternative subtype, the various parts are different representations of the same

information.

• The multipart/digest subtype is used when each of the body parts is interpreted as an RFC 5322

message with headers.

• The message/partial subtype enables fragmentation of a large message into a number of parts, which

must be reassembled at the destination. For this subtype, three parameters are specified in the Content-

Type: Message/Partial field: an id common to all fragments of the same message, a sequence number

unique to each fragment, and the total number of fragments

MIME CONTENT TYPES

MIME TRANSFER ENCODINGS

• The objective is to provide reliable delivery across the largest range of environments.

• The MIME standard defines two methods of encoding data. The Content- Transfer-Encoding field can

actually take on six values.

S/MIME Functionality
In terms of general functionality, S/MIME is very similar to PGP. Both offer the ability to sign and/or encrypt

messages.

S/MIME provides the following functions.

 Enveloped data: This consists of encrypted content of any type and encrypted content encryption keys

for one or more recipients.

 Signed data: A digital signature is formed by taking the message digest of the content to be signed and

then encrypting that with the private key of the signer. The content plus signature are then encoded

using base64 encoding. A signed data message can only be viewed by a recipient with S/MIME
capability.

 Clear-signed data: As with signed data, a digital signature of the content is formed. However, in this

case, only the digital signature is encoded using base64.As a result, recipients without S/MIME

capability can view the message content, although they cannot verify the signature.

 Signed and enveloped data: Signed-only and encrypted-only entities may be nested, so that encrypted

data may be signed and signed data or clear-signed data may be encrypted.

CRYPTOGRAPHIC ALGORITHMS Table 7.6 summarizes the cryptographic algorithms used in S/MIME. S/MIME

uses the following terminology taken from RFC 2119 (Key Words for use in RFCs to Indicate Requirement

Levels) to specify the requirement level:

• MUST: The definition is an absolute requirement of the specification. An implementation must include this

feature or function to be in conformance with the specification.

• SHOULD: There may exist valid reasons in particular circumstances to ignore this feature or function, but it is
recommended that an implementation include the feature or function.

Scope of S/MIME Security

• S/MIME secures a MIME entity

– a MIME entity is entire message except the headers

– so the header is not secured

• First MIME message is prepared

• This message and other security related data (algorithm identifiers, certificates, etc.) are processed by

S/MIME

• and packed as one of the S/MIME content type

S/MIME Content Types

ENVELOPED DATA

• Used for message encryption

The steps for preparing an enveloped Data MIME entity are

1. Generate a pseudorandom session key for a particular symmetric encryption algorithm (RC2/40 or triple

DES).

2. For each recipient, encrypt the session key with the recipient’s public RSA key.

3. For each recipient, prepare a block known as RecipientInfo that contains an identifier of the recipient’s

public-key certificate,3 an identifier of the algorithm used to encrypt the session key, and the encrypted session

key.

4. Encrypt the message content with the session key.

To recover the encrypted message, the recipient first strips off the base64 encoding. Then the recipient’s private

key is used to recover the session key. Finally, the message content is decrypted with the session key.

SIGNEDDATA

The steps for preparing a signedData MIME entity are

1. Select a message digest algorithm (SHA or MD5).

2. Compute the message digest (hash function) of the content to be signed.

3. Encrypt the message digest with the signer’s private key.

4. Prepare a block known as SignerInfo that contains the signer’s publickey certificate, an identifier of the

message digest algorithm, an identifier of the algorithm used to encrypt the message digest, and the encrypted

message digest.

To recover the signed message and verify the signature, the recipient first strips off the base64 encoding. Then

the signer’s public key is used to decrypt the message digest. The recipient independently computes the message

digest and compares it to the decrypted message digest to verify the signature.

CLEAR SIGNING

Clear signing is achieved using the multipart content type with a signed subtype. As was mentioned, this signing

process does not involve transforming the message to be signed, so that the message is sent “in the clear.” Thus,

recipients with MIME capability but not S/MIME capability are able to read the incoming message.

A multipart/signed message has two parts. The first part can be any MIME type but must be prepared so that it

will not be altered during transfer from source to destination.This means that if the first part is not 7bit, then it

needs to be encoded using base64 or quoted-printable.Then this part is processed in the same manner as

signedData, but in this case an object with signedData format is created that has an empty message

content field. This object is a detached signature.

S/MIME Certificate Processing
S/MIME uses public-key certificates that conform to version 3 of X.509. The key-management scheme used by

S/MIME is in some ways a hybrid between a strict X.509 certification hierarchy and PGP’s web of trust.

USER AGENT ROLE An S/MIME user has several key-management functions to

perform.

• Key generation: The user of some related administrative utility (e.g., one associated with LAN management)

MUST be capable of generating separate Diffie-Hellman and DSS key pairs and SHOULD be capable of

generating RSA key pairs. Each key pair MUST be generated from a good source of nondeterministic random

input and be protected in a secure fashion. A user agent SHOULD generate RSA key pairs with a length in the

range of 768 to 1024 bits and MUST NOT generate a length of less than 512 bits.

• Registration: A user’s public key must be registered with a certification authority in order to receive an X.509

public-key certificate.

• Certificate storage and retrieval: A user requires access to a local list of certificates in order to verify

incoming signatures and to encrypt outgoing messages. Such a list could be maintained by the user or by some

local administrative entity on behalf of a number of users.

VERISIGN CERTIFICATES

VeriSign provides a CA service that is intended to be compatible with S/MIME and a variety of other

applications. VeriSign issues X.509 certificates with the product name VeriSign Digital ID. As of early 1998,

over 35,000 commercial Web sites were using VeriSign Server Digital IDs, and over a million consumer Digital

IDs had been issued to users of Netscape and Microsoft browsers.

At a minimum, each Digital ID contains

• Owner’s public key

• Owner’s name or alias

• Expiration date of the Digital ID

• Serial number of the Digital ID
• Name of the certification authority that issued the Digital ID

• Digital signature of the certification authority that issued the Digital ID.

Digital IDs can also contain other user-supplied information, including

• Address

• E-mail address

• Basic registration information (country, zip code, age, and gender).

VeriSign provides three levels, or classes, of security for public-key certificates, as summarized in Table 7.8.

Enhanced Security Services
As of this writing, three enhanced security services have been proposed in an Internet draft. The details of these

may change, and additional services may be added. The three services are

• Signed receipts: A signed receipt may be requested in a SignedData object. Returning a signed receipt

provides proof of delivery to the originator of a message and allows the originator to demonstrate to a third party

that the recipient received the message. In essence, the recipient signs the entire original message plus the

original (sender’s) signature and appends the new signature to form a new S/MIME message.

• Security labels: A security label may be included in the authenticated attributes of a SignedData object. A

security label is a set of security information regarding the sensitivity of the content that is protected by

S/MIME encapsulation. The labels may be used for access control, by indicating which users are permitted

access to an object. Other uses include priority (secret, confidential, restricted, and so on) or role based,

describing which kind of people can see the information (e.g., patient’s health-care team, medical billing agents,

etc.).

• Secure mailing lists: When a user sends a message to multiple recipients, a certain amount of per-recipient
processing is required, including the use of each recipient’s public key. The user can be relieved of this work by

employing the services of an S/MIME Mail List Agent (MLA). An MLA can take a single incoming message,

perform the recipient-specific encryption for each recipient, and forward the message.The originator of a

message need only send the message to the MLA with encryption performed using the MLA’s public key

IP SECURITY OVERVIEW

 In 1994, the Internet Architecture Board (IAB) issued a report titled “Security in the Internet

Architecture” (RFC 1636).

 The report focussed the need to secure the network infrastructure from unauthorized monitoring and

control of network traffic and the need to secure end-user-to-end-user traffic using authentication and

encryption mechanisms

 To provide security, the IAB included authentication and encryption as necessary security features in

the next-generation IP, which has been issued as IPv6 & IPV4

 This means that vendors can begin offering these features now, and many vendors now do have some

IPsec capability in their products.

Applications of IPsec:

IPsec provides the capability to secure communications across a LAN, across private and public WANs, and

across the Internet.

 Secure branch office connectivity over the Internet: A company can build a secure virtual private

network over the Internet or over a public WAN. This enables a business to rely heavily on the Internet

and reduce its need for private networks, saving costs and network management overhead.

 Secure remote access over the Internet: An end user whose system is equipped with IP security

protocols can make a local call to an Internet Service Provider (ISP) and gain secure access to a
company network. This reduces the cost of toll charges for traveling employees and telecommuters.

 Establishing extranet and intranet connectivity with partners: IPsec can be used to secure

communication with other organizations, ensuring authentication and confidentiality and providing a

key exchange mechanism

 Enhancing electronic commerce security: Even though some Web and electronic commerce

applications have built-in security protocols, the use of IPsec enhances that security. IPsec guarantees

that all traffic designated by the network administrator is both encrypted and authenticated, adding an

additional layer of security to whatever is provided at the application layer

Benefits of IPsec
Some of the benefits of IPsec:

 When IPsec is implemented in a firewall or router, it provides strong security that can be applied to all

traffic crossing the perimeter. Traffic within a company or workgroup does not incur the overhead of

security-related processing.

 IPsec in a firewall is resistant to bypass if all traffic from the outside must use IP and the firewall is the

only means of entrance from the Internet into the organization.

 There is no need to change software on a user or server system when IPsec is implemented in the

firewall or router. Even if IPsec is implemented in end systems applications, is not affected.

 There is no need to train users on security mechanisms, issue keying material on a per-user basis, or

revoke keying material.

 IPsec can provide security for individual users if needed. This is useful for offsite workers and for

setting up a secure virtual subnetwork within an organization for sensitive applications.

Routing Applications
IPsec can play a vital role in the routing architecture required for internetworking. IPsec can assure that

 A router advertisement (a new router advertises its presence) comes from an authorized router.

 A neighbor advertisement (a router seeks to establish or maintain a neighbour relationship with a router

in another routing domain) comes from an authorized router.

 A redirect message comes from the router to which the initial IP packet was sent.

 A routing update is not forged.

IPsec Documents
IPsec encompasses three functional areas: authentication, confidentiality, and key management. The documents

can be categorized into the following groups.

 Architecture: Covers the general concepts, security requirements, definitions, and mechanisms

defining IPsec technology. The current specification is RFC 4301, Security Architecture for the

Internet Protocol.

 Authentication Header (AH): AH is an extension header to provide message authentication. The

current specification is RFC 4302, IP Authentication Header.

 Encapsulating Security Payload (ESP): ESP consists of an encapsulating header and trailer used to

provide encryption or combined encryption/authentication. The current specification is RFC 4303, IP

Encapsulating Security Payload (ESP).

 Internet Key Exchange (IKE): This is a collection of documents describing the key management

schemes for use with IPsec. The main specification is RFC 4306, Internet Key Exchange (IKEv2)

Protocol, but there are a number of related RFCs.

 Cryptographic algorithms: This category encompasses a large set of documents that define and

describe cryptographic algorithms for encryption, message authentication, pseudorandom functions
(PRFs), and cryptographic key exchange.

 Other: There are a variety of other IPsec-related RFCs, including those dealing with security policy

and management information base (MIB) content.

IPsec Services

RFC 4301 lists the following services:

• Access control

• Connectionless integrity

• Data origin authentication

• Rejection of replayed packets (a form of partial sequence integrity)

• Confidentiality (encryption)
• Limited traffic flow confidentiality

Transport and Tunnel Modes
Both AH and ESP support two modes of use: transport and tunnel mode.

TRANSPORT MODE Transport mode provides protection primarily for upper-layer Protocols. Examples include a

TCP or UDP segment or an ICMP packet. Typically, transport mode is used for end-to-end communication

between two hosts.

ESP in transport mode encrypts and optionally authenticates the IP payload but not the IP header. AH in

transport mode authenticates the IP payload and selected portions of the IP header.

TUNNEL MODE Tunnel mode provides protection to the entire IP packet. To achieve this, after the AH or ESP

fields are added to the IP packet, the entire packet plus security fields is treated as the payload of new outer IP

packet with a new outer IP header. The entire original, inner, packet travels through a tunnel from one point of

an IP network to another; no routers along the way are able to examine the inner IP header. Because the original

packet is encapsulated, the new, larger packet may have totally different source and destination addresses,

adding to the security.

Here is an example of how tunnel mode IPsec operates. Host A on a network generates an IP packet with the

destination address of host B on another network. This packet is routed from the originating host to a firewall or
secure router at the boundary of A’s network. The firewall filters all outgoing packets to determine the need for

IPsec processing. If this packet from A to B requires IPsec, the firewall performs IPsec processing and

encapsulates the packet with an outer IP header. The source IP address of this outer IP packet is this firewall,

and the destination address may be a firewall that forms the boundary to B’s local network. This packet is now

routed to B’s firewall, with intermediate routers examining only the outer IP header. At B’s firewall, the outer IP

header is stripped off, and the inner packet is delivered to B.

ESP in tunnel mode encrypts and optionally authenticates the entire inner IP packet, including the inner IP

header. AH in tunnel mode authenticates the entire inner IP packet and selected portions of the outer IP header.

ENCAPSULATING SECURITY PAYLOAD

ESP can be used to provide confidentiality, data origin authentication, connectionless integrity, an anti-replay

service (a form of partial sequence integrity), and (limited) traffic flow confidentiality.

ESP Format

 Security Parameters Index (32 bits): Identifies a security association.

 Sequence Number (32 bits): A monotonically increasing counter value; this provides an anti-replay

function, as discussed for AH.

 Payload Data (variable): This is a transport-level segment (transport mode) or IP packet (tunnel

mode) that is protected by encryption.

 Padding (0–255 bytes): The purpose of this field is discussed later.

 Pad Length (8 bits): Indicates the number of pad bytes immediately preceding this field.

 Next Header (8 bits): Identifies the type of data contained in the payload data field by identifying the

first header in that payload (for example, an extension header in IPv6, or an upper-layer protocol such
as TCP).

 Integrity Check Value (variable): A variable-length field (must be an integral number of 32-bit

words) that contains the Integrity Check Value computed over the ESP packet minus the

Authentication Data field.

Encryption and Authentication Algorithms
The Payload Data, Padding, Pad Length, and Next Header fields are encrypted by the ESP service. If the

algorithm used to encrypt the payload requires cryptographic synchronization data, such as an initialization

vector (IV), then these data may be carried explicitly at the beginning of the Payload Data field. If included, an

IV is usually not encrypted, although it is often referred to as being part of the ciphertext.

The ICV field is optional. potentially reducing the impact of denial of service (DoS) attacks. It also allows for

the possibility of parallel processing of packets at the receiver, i.e., decryption can take place in parallel with

integrity checking.

Padding
The Padding field serves several purposes:

• If an encryption algorithm requires the plaintext to be a multiple of some number of bytes (e.g., the multiple of

a single block for a block cipher), the Padding field is used to expand the plaintext (consisting of the Payload

Data, Padding, Pad Length, and Next Header fields) to the required length.

• The ESP format requires that the Pad Length and Next Header fields be right aligned within a 32-bit word.

Equivalently, the ciphertext must be an integer multiple of 32 bits. The Padding field is used to assure this

alignment.
• Additional padding may be added to provide partial traffic-flow confidentiality by concealing the actual length

of the payload.

Anti-Replay Service
A replay attack is one in which an attacker obtains a copy of an authenticated packet and later transmits it to

the intended destination. The receipt of duplicate, authenticated IP packets may disrupt service in some way or

may have some other undesired consequence. The Sequence Number field is designed to thwart such attacks.

When a new SA is established, the sender initializes a sequence number counter to 0. Each time that a packet is

sent on this SA, the sender increments the counter and places the value in the Sequence Number field. Thus, the

first value to be used is 1. If anti-replay is enabled (the default), the sender must not allow the sequence number

to cycle past 232– 1 back to zero. Otherwise, there would be multiple valid packets with the same sequence

number. If the limit of 232
 – 1 is reached, the sender should terminate this SA and negotiate a new SA with a

new key.

Because IP is a connectionless, unreliable service, the protocol does not guarantee that packets will be delivered

in order and does not guarantee that all packets will be delivered. Therefore, the IPsec authentication document

dictates that the receiver should implement a window of size W, with a default of W = 64.The right edge of the

window represents the highest sequence number, , so far received for a valid packet. For any packet with a

sequence number in the range from N – W + 1 to N that has been correctly received (i.e., properly

authenticated), the corresponding slot in the window is marked (Figure 8.6). Inbound processing proceeds as

follows when a packet is received:

1. If the received packet falls within the window and is new, the MAC is checked. If the packet is

authenticated, the corresponding slot in the window is marked.

2. If the received packet is to the right of the window and is new, the MAC is checked. If the packet is
authenticated, the window is advanced so that this sequence number is the right edge of the window,

and the corresponding slot in the window is marked.

3. If the received packet is to the left of the window or if authentication fails, the packet is discarded; this

is an auditable event.

Transport and Tunnel Modes
Figure 8.7 shows two ways in which the IPsec ESP service can be used. In the upper part of the figure,

encryption (and optionally authentication) is provided directly between two hosts. Figure 8.7b shows how tunnel

mode operation can be used to set up a virtual private network. In this example, an organization has four

private networks interconnected across the Internet. Hosts on the internal networks use the Internet for transport

of data but do not interact with other Internet-based hosts. By terminating the tunnels at the security gateway to

each internal network, the configuration allows the hosts to avoid implementing the security capability. The

former technique is supported by a transport mode SA, while the latter technique uses a

tunnel mode SA.

TRANSPORT MODE ESP Transport mode ESP is used to encrypt and optionally authenticate the data carried by

IP (e.g., a TCP segment), as shown in Figure 8.8b.

For this mode using IPv4, the ESP header is inserted into the IP packet immediately prior to the transport-layer

header (e.g., TCP, UDP, ICMP), and an ESP trailer (Padding, Pad Length, and Next Header fields) is placed

after the IP packet. If authentication is selected, the ESP Authentication Data field is added after the ESP

trailer. The entire transport-level segment plus the ESP trailer are encrypted. Authentication covers all of the

ciphertext plus the ESP header.

In the context of IPv6, ESP is viewed as an end-to-end payload; that is, it is not examined or processed by

intermediate routers. Therefore, the ESP header appears after the IPv6 base header and the hop-by-hop, routing,

and fragment extension headers. The destination options extension header could appear before or after the

ESP header, depending on the semantics desired. For IPv6, encryption covers the entire transport-level segment
plus the ESP trailer plus the destination options extension header if it occurs after the ESP header. Again,

authentication covers the ciphertext plus the ESP header.

Transport mode operation may be summarized as follows.

1. At the source, the block of data consisting of the ESP trailer plus the entire transport-layer segment is

encrypted and the plaintext of this block is replaced with its ciphertext to form the IP packet for transmission.

Authentication is added if this option is selected.

2. The packet is then routed to the destination. Each intermediate router needs to examine and process the IP
header plus any plaintext IP extension headers but does not need to examine the ciphertext.

3. The destination node examines and processes the IP header plus any plaintext IP extension headers. Then, on

the basis of the SPI in the ESP header, the destination node decrypts the remainder of the packet to recover the

plaintext transport-layer segment.

TUNNEL MODE ESP Tunnel mode ESP is used to encrypt an entire IP packet (Figure 8.8c). For this mode, the

ESP header is prefixed to the packet and then the packet plus the ESP trailer is encrypted. This method can be

used to counter traffic analysis.

Because the IP header contains the destination address and possibly source routing directives and hop-by-hop

option information, it is not possible simply to transmit the encrypted IP packet prefixed by the ESP header.

Intermediate routers would be unable to process such a packet. Therefore, it is necessary to encapsulate

the entire block (ESP header plus ciphertext plus Authentication Data, if present) with a new IP header that will

contain sufficient information for routing but not for traffic analysis.

Whereas the transport mode is suitable for protecting connections between hosts that support the ESP feature,

the tunnel mode is useful in a configuration that includes a firewall or other sort of security gateway that

protects a trusted network from external networks. In this latter case, encryption occurs only between an

external host and the security gateway or between two security gateways. This relieves hosts on the internal

network of the processing burden of encryption and simplifies the key distribution task by reducing the number

of needed keys. Further, it thwarts traffic analysis based on ultimate destination. Consider a case in which an

external host wishes to communicate with a host on an internal network protected by a firewall, and in which

ESP is implemented in the external host and the firewalls.

The following steps occur for transfer of a transport- layer segment from the external host to the internal host.
1. The source prepares an inner IP packet with a destination address of the target internal host. This packet is

prefixed by an ESP header; then the packet and ESP trailer are encrypted and Authentication Data may

be added. The resulting block is encapsulated with a new IP header (base header plus optional extensions such

as routing and hop-by-hop options for IPv6) whose destination address is the firewall; this forms the outer IP

packet.

2. The outer packet is routed to the destination firewall. Each intermediate router needs to examine and process

the outer IP header plus any outer IP extension headers but does not need to examine the ciphertext.

3. The destination firewall examines and processes the outer IP header plus any outer IP extension headers.

Then, on the basis of the SPI in the ESP header, the destination node decrypts the remainder of the packet to

recover the plaintext inner IP packet. This packet is then transmitted in the internal network.

4. The inner packet is routed through zero or more routers in the internal network to the destination host.

COMBINING SECURITY ASSOCIATIONS

An individual SA can implement either the AH or ESP protocol but not both. Sometimes a particular traffic flow

will call for the services provided by both AH and ESP.

The term security association bundle refers to a sequence of SAs through which traffic must be processed to

provide a desired set of IPsec services.

Security associations may be combined into bundles in two ways:

Transport adjacency: Refers to applying more than one security protocol to the same IP packet without

invoking tunneling. This approach to combining AH and ESP allows for only one level of combination.

Iterated tunneling: Refers to the application of multiple layers of security protocols effected through IP

tunneling. This approach allows for multiple levels of nesting.

Authentication Plus Confidentiality
Encryption and authentication can be combined in order to transmit an IP packet that has both confidentiality

and authentication between hosts. We look at several approaches.

Approach 1: ESP WITH AUTHENTICATION OPTION

This approach is illustrated in Figure 8.8. In this approach, the user first applies ESP to the data to be protected

and then appends the authentication data field. For both cases, authentication applies to the ciphertext rather

than the plaintext. There are actually two subcases:
• Transport mode ESP: Authentication and encryption apply to the IP payload delivered to the host, but the IP

header is not protected.

• Tunnel mode ESP: Authentication applies to the entire IP packet delivered to the outer IP destination address

(e.g., a firewall), and authentication is performed at that destination. The entire inner IP packet is protected by

the privacy mechanism for delivery to the inner IP destination.

Approach 2: TRANSPORT ADJACENCY

Another way to apply authentication after encryption is to use two bundled transport SAs, with the inner being

an ESP SA and the outer being an AH SA

Approach 3: TRANSPORT-TUNNEL BUNDLE The use of authentication prior to encryption might be preferable for

several reasons. First, because the authentication data are protected by encryption, it is impossible for anyone to

intercept the message and alter the authentication data without detection. Second, it may be desirable to store

the authentication information with the message at the destination for later reference. It is more convenient to do

this if the authentication information applies to the unencrypted message; otherwise the message would have to
be re-encrypted to verify the authentication information.

One approach to applying authentication before encryption between two hosts is to use a bundle consisting of an

inner AH transport SA and an outer ESP tunnel SA. In this case, authentication is applied to the IP payload plus

the IP header (and extensions) except for mutable fields. The resulting IP packet is then processed in tunnel

mode by ESP; the result is that the entire, authenticated inner packet is encrypted and a new outer IP header (and

extensions) is added.

Basic Combinations of Security Associations
The IPsec Architecture document lists four examples of combinations of SAs.

Case 1. All security is provided between end systems that implement IPsec. For any two end systems to

communicate via an SA, they must share the appropriate secret keys.

Case 2. Security is provided only between gateways (routers, firewalls, etc.) and no hosts implement IPsec. This

case illustrates simple virtual private network support.

Case 3. This builds on case 2 by adding end-to-end security.The same combinations discussed for cases 1 and 2
are allowed here.The gateway-to-gateway tunnel provides either authentication, confidentiality, or both for all

traffic between end systems.

Case 4. This provides support for a remote host that uses the Internet to reach an organization’s firewall and

then to gain access to some server or workstation behind the firewall.

INTERNET KEY EXCHANGE

The key management portion of IPsec involves the determination and distribution of secret keys. A typical

requirement is four keys for communication between two applications. The IPsec Architecture document

mandates support for two types of key management:

Manual: A system administrator manually configures each system with its own keys and with the keys of other

communicating systems. This is practical for small, relatively static environments.

• Automated: An automated system enables the on-demand creation of keys for SAs and facilitates the use of

keys in a large distributed system with an evolving configuration.

The default automated key management protocol for IPsec is referred to as ISAKMP/Oakley and consists of the

following elements:

• Oakley Key Determination Protocol: Oakley is a key exchange protocol based on the Diffie-Hellman

algorithm but providing added security. Oakley is generic in that it does not dictate specific formats.

• Internet Security Association and Key Management Protocol (ISAKMP): ISAKMP provides a framework

for Internet key management and provides the specific protocol support, including formats, for negotiation of

security attributes. This doesnot follow any particular algorithm but consists of message types

FEATURES OF IKE KEY DETERMINATION The IKE key determination algorithm is

characterized by five important features:

1. It employs a mechanism known as cookies to thwart clogging attacks.

2. It enables the two parties to negotiate a group; this, in essence, specifies the global

parameters of the Diffie-Hellman key exchange.

3. It uses nonces to ensure against replay attacks.

4. It enables the exchange of Diffie-Hellman public key values.
5. It authenticates the Diffie-Hellman exchange to thwart man-in-the-middle

attacks.

The cookie exchange requires that each side send a pseudorandom number, the cookie, in the initial message,

which the other side acknowledges. This acknowledgment must be repeated in the first message of the Diffie-

Hellman key exchange. If the source address was forged, the opponent gets no answer. Thus, an opponent can

only force a user to generate acknowledgments and not to perform the Diffie-Hellman calculation.

1. The cookie must depend on the specific parties

2. It must not be possible for anyone other than the issuing entity to generate cookies that will be accepted

by that entity.

3. The cookie generation and verification methods must be fast to thwart attacks intended to sabotage
processor resources.

The recommended method for creating the cookie is to perform a fast hash (e.g., MD5) over the IP Source and

Destination addresses, the UDP Source and Destination ports, and a locally generated secret value.

Three different authentication methods can be used with IKE key determination:

• Digital signatures: The exchange is authenticated by signing a mutually obtainable hash; each party encrypts

the hash with its private key. The hash is generated over important parameters, such as user IDs and nonces.

• Public-key encryption: The exchange is authenticated by encrypting parameters such as IDs and nonces with

the sender’s private key.

Symmetric-key encryption: A key derived by some out-of-band mechanism can be used to authenticate the
exchange by symmetric encryption of exchange parameters.

IKEV2 EXCHANGES The IKEv2 protocol involves the exchange of messages in pairs. The first two pairs of

exchanges are referred to as the initial exchanges (Figure 8.11a). In the first exchange, the two peers exchange

information concerning cryptographic algorithms and other security parameters they are willing to use along

with nonces and Diffie-Hellman (DH) values.

In the second exchange, the two parties authenticate. The CREATE_CHILD_SA exchange can be used to

establish further SAs for protecting traffic. The informational exchange is used to exchange management
information, IKEv2 error messages, and other notifications.

Header and Payload Formats

IKE HEADER FORMAT An IKE message consists of an IKE header followed by one or more payloads. It consists

of the following fields.

 Initiator SPI (64 bits): A value chosen by the initiator to identify a unique IKE security association

(SA).

 Responder SPI (64 bits): A value chosen by the responder to identify a unique IKE SA.

 Next Payload (8 bits): Indicates the type of the first payload in the message; payloads are discussed in

the next subsection.

 Major Version (4 bits): Indicates major version of IKE in use.

 Minor Version (4 bits): Indicates minor version in use.

 Exchange Type (8 bits): Indicates the type of exchange; these are discussed later in this section.

 Flags (8 bits): Indicates specific options set for this IKE exchange. Three bits are defined so far.The

initiator bit indicates whether this packet is sent by the SA initiator. The version bit indicates whether

the transmitter is capable of using a higher major version number than the one currently indicated. The

response bit indicates whether this is a response to a message containing the same message ID

 Message ID (32 bits): Used to control retransmission of lost packets and matching of requests and

responses.

 Length (32 bits): Length of total message (header plus all payloads) in octets

IKE PAYLOAD TYPES

CRYPTOGRAPHIC SUITES

RFC 4308 defines two cryptographic suites for establishing virtual private networks. Suite VPN-A matches the

commonly used corporate VPN security used in older IKEv1 implementations at the time of the issuance of

IKEv2 in 2005. Suite VPN-B provides stronger security and is recommended for new VPNs that implement

IPsecv3 and IKEv2

VPN-A relies on 3DES and HMAC, while VPN-B relies exclusively on AES. Three types of secret-key

algorithms are used:
• Encryption: For encryption, the cipher block chaining (CBC) mode is used.

• Message authentication: For message authentication, VPN-A relies on HMAC

with SHA-1 with the output truncated to 96 bits. VPN-B relies on a variant of

CMAC with the output truncated to 96 bits.

• Pseudorandom function: IKEv2 generates pseudorandom bits by repeated

use of the MAC used for message authentication.

